
Page 1 of 14

Abstract

This paper presents three new results concerning credit-based
flow control for ATM networks: (1) a simple and robust credit
update protocol (CUP) suited for relatively inexpensive hardware/
software implementation; (2) automatic adaptation of credit buffer
allocation for virtual circuits (VCs) sharing the same buffer pool;
(3) use of credit-based flow control to improve the effectiveness of
statistical multiplexing in minimizing switch memory. These results
have been substantiated by analysis, simulation and implementa-
tion.

1. Introduction
Flow control is essential for asynchronous transfer mode

(ATM) networks [1] in providing “best-effort” services, or ABR
(Available Bit Rate) services in the ATM Forum terminology. With
proper flow control, computer users would be able to use an ATM
network in the same way as they have been using conventional
LANs, namely, they can use the network at any time without first
negotiating a “traffic contract” with the network. Any one user
would be able to acquire as much network resources as are avail-
able at any given moment, and all users compete equally for the
available bandwidth.

An efficient way of implementing flow-controlled ATM
networks is through the use of credit-based, per VC, link-by-link
flow control [11]. This paper gives several new results related to
the credit-based flow control. All the VCs are assumed to be under
“best-effort” or ABR services, unless stated otherwise.

The organization of the paper is as follows: First, motivations
for per VC, link-by-link flow control are given. This is followed by
an overview of the credit-based flow control approach and a
summary of its advantages. Then three main results of this results
are presented:

• In Section 5, we describe a credit update protocol (CUP),
which allows relatively simple hardware/software implemen-
tation and is robust against transient errors.

• In Section 6, we describe an adaptive credit allocation scheme
where a number of VCs can dynamically share the same buffer
pool while still guaranteeing no data loss due to congestion
and ensuring high link utilization. The credit buffer allocated
to an individual VC will adjust automatically according to the
actual bandwidth usage of the VC. There are two advantages
of this adaptation capability. First, since the credit buffer size
can be derived automatically, there is no need for the user or
the system to specify it. This significantly eases the use and
implementation of “best-effort” or ABR services. Second,
since inactive VCs can automatically yield their unused buffer
space to other active ones, the total buffer size required by the
flow-controlled VCs at the node can be minimized. In practice,
the total buffer for all the VCs need not be larger than a small
multiple of the product of the link bandwidth and round-trip
link propagation delay. We present simulation results demon-
strating the effectiveness of this adaptive credit scheme.

• In Section 7, we note that credit-based flow control can help
statistical multiplexing in minimizing switch memory. This
result is especially useful for WAN switches which may have
to depend on statistical multiplexing to reduce the otherwise
large memory required to cover large propagation delays.
Credit-based flow control can help because it will automati-
cally limit burst sizes to be no more than the allocated credit
size, thereby improving the effectiveness of statistical multi-
plexing. We present simulation results demonstrating signifi-
cant memory reduction while achieving zero or low rate of cell
loss. The approach is particularly attractive for traffic with
large bursts for which statistical multiplexing without flow
control would perform poorly.

These three results are complementary. CUP provides a base-
line, efficient and robust protocol for implementing credit-based
flow control. Adaptive credit allocation allows efficient sharing of
a given buffer pool between multiple VCs, and eases the use of
credit-based flow control. Improved statistical multiplexing due to
credit-based flow control will allow a switch memory of the same
size to serve an expanded number of VCs and to handle links of
increased propagation delays.

A version of the proposed credit-based flow control scheme has
been implemented on an experimental ATM switch with 622-

Credit-Based Flow Control for ATM Networks:
Credit Update Protocol, Adaptive Credit Allocation, and Statistical Multiplexing

H. T. Kung1, Trevor Blackwell1, 2 and Alan Chapman2

1Division of Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
2Bell-Northern Research, P.O.Box 3511, Station C, Ottawa, Ontario K1Y 4H7, Canada

This research was supported in part by BNR, and in part by the
Advanced Research Projects Agency (DOD) monitored by ARPA/
CMO under Contract MDA972-90-C-0035 and by AFMC under
Contract F19628-92-C-0116.

Page 2 of 14

Mbps ports, currently under joint development by BNR and
Harvard. This switch will be operational in fall 1994.

2. Why Per VC Link-by-Link Flow Control?
The Flow-Controlled Virtual Connections (FCVC) approach

[11], using per VC, link-by-link flow control, is different from
other proposals on congestion control (see, e.g., [2, 8, 15]). Our
interest in FCVC is primarily due to its effectiveness in maxi-
mizing network utilization, controlling congestion, and imple-
menting “best-effort” or ABR services.

2.1. Maximizing Network Utilization
FCVC provides effective means of using fill-in traffic to maxi-

mize network utilization, as depicted in Figure 1. Using FCVC,
best-effort traffic can effectively fill in bandwidth slack left by
scheduled traffic with guaranteed bandwidth and latency such as
video and audio. In the fill-in process, various scheduling policies
can be employed. For example, high-priority best-effort traffic can
be used in the fill in before the low-priority one.

For effective traffic fill in, fast congestion feedback for indi-
vidual VCs is needed. Measurements have shown that data [6, 13]
and video [7] traffic often exhibit large bandwidth variations even
over time intervals as small as 10 milliseconds. With the emer-
gence of very high-bandwidth traffic sources such as high-speed
host computers with 800-Mbps HIPPI network [3] interfaces,
networks will experience further increases in load fluctuations
[10]. To utilize slack bandwidth in the presence of highly bursty
traffic, fast congestion feedback is necessary.

To illustrate the need of fast feedback or flow control for effec-
tive fill in, consider a simple case of maximizing the utilization of
a link. As depicted in Figure 2, there are multiple VCs from the
sender to the receiver sharing the link. The VC scheduler at the
sender selects (when possible), for each cell cycle, a VC from
which a cell will be transmitted over the link. It is intuitively clear
how the scheduler should work; that is, after satisfying VCs of
guaranteed performance, the scheduler will select other VCs (“fill-
in” VCs), with high priority ones first, to fill in the available band-
width of the link.

However, two additional conditions (both requiring fast flow
control) must be satisfied in order to achieve effective fill in:

• First, data to be used for fill in must be “drawn” to the sender
in time. That is, these fill-in VCs should try to hold in their
buffers at the sender a number of cells that are ready to be
forwarded. There should be sufficiently many of these cells so
that they can fill in slack bandwidth at a high rate as soon as
the bandwidth becomes available. Note that how long these
cells will stay at the sender depends on the load of other VCs.

Network
Utilization

Time

Guaranteed Traffic

100%

Fill in “Best-Effort” Traffic

Figure 1: Fill in bandwidth slacks with “best-effort” traffic

When the cells of a VC are not moving out, the upstream node
of the VC needs to be flow controlled to avoid buffer overflow.
On the other hand, when these cells start moving out, the flow
control mechanism should be able to draw in additional cells
from the upstream node to fill VC buffers at the sender.

• Second, only “deliverable” traffic should be transmitted over
the link in the sense that transmitted data should not be
dropped at the receiver due to lack of buffer space. That is, the
receiver should have buffer space for storing each arriving
cell. Flow control is thus needed for the receiver to inform the
sender about buffer space availability. The cost of retransmit-
ting dropped packets increases with both the bandwidth and
size of the network, such that on nationwide gigabit networks
the penalty is very high.

By using link-by-link flow control, FCVC implements the
required feedback at the fastest possible speed. Performance simu-
lation [12] has confirmed the effectiveness of FCVC in filling in
traffic, and thus in maximizing network utilization.

2.2. Controlling Congestion
Another reason for FCVC is congestion control. For high-

speed networks, in addition to highly bursty traffic mentioned
above, there is the problem of increased mismatches in bandwidth
[10]. When the peak speed of links increases in a network, so may
bandwidth mismatches in the network. For example, when a 1-
Gbps link is added to a network which includes a 10-Mbps
Ethernet, there will be two orders of magnitude difference in their
speeds. When data flows from the high-speed link to the low-speed
one, congestion will build up quickly. This represents additional
congestion scenarios beyond the usual congestion caused by the
merging of multiple traffic streams.

The highly bursty traffic and increased bandwidth mismatches
expected will increase the frequency of transient congestion. It is
therefore important to ensure that transient congestion does not
persist and evolve into permanent network collapse.

Using FCVC, a VC can be guaranteed not to lose cells due to
congestion. When experiencing congestion, backpressure will
build up quickly along congested VCs spanning one or more hops.
When encountering backpressure, the traffic source of a congested
VC can be throttled. Thus excessive traffic can be blocked at the
boundary of the network, instead of being allowed to enter the
network and cause congestion problems to other traffic.

Link
VC1

VC2

VC3

VC1

VC2

VC3
Sender Receiver

 VC Buffer

1. Flow control with upstream
node to ensure that each VC
buffer has enough cells ready
for fill in, and does not overflow

2. Flow control with
sender to ensure that
there is buffer space for
storing each arriving cell

Figure 2: Two reasons for flow control
in achieving effective traffic fill in

Page 8 of 14

ramping up on one link, it can also start ramping up the next link as
soon as data that have caused the ramp up on the first link begin to
reach the second link. Thus, the total extra delay in the receiver-
oriented adaptation is expected to be only about one RTT corre-
sponding to that hop which has the largest RTT value. This has
been validated by simulation results, which will be reported in
another paper.

7. Flow-Controlled Statistical Multiplexing
for Minimizing Switch Memory

For the N23 Scheme, or any other similar credit-based flow
control method, the total amount of memory required to allow all
the VCs to reach their desired peak bandwidth can be large, espe-
cially for WANs where propagation delays are large. However if
we allow some (very) small probability of cell loss, then the
memory size can be significantly reduced by statistical multi-
plexing. It will be shown that credit-based flow control will
improve the effectiveness of statistical multiplexing.

We use the notion of “virtual memory” to describe the concept
of using statistical multiplexing in reducing the size of the “real
memory” of a switch. This is depicted in Figure 9.

• VC’s buffer (the N2 and N3 areas) for supporting credit-based
flow control is allocated from the virtual memory of the
switch.

• Buffer space actually occupied by data cells at any given time
(shaded area) is allocated from the real memory of the switch.
When the real memory is overflowed, data cells will be
dropped. The real memory is sized for low cell loss.

There are advantages of using a virtual memory substantially
larger than the real memory. These include fast bandwidth ramp up
in adaptive credit allocation, and increased number of admitted
flow-controlled VCs.

There are reasons to expect that this virtual memory approach
based on statistical multiplexing can be effective. Obviously, an
inactive VC with no data cells to forward will not consume any
real memory. Even an active VC, under a non-congestion situation,
will occupy at most one cell in the real memory at any time, inde-
pendently of the VC’s bandwidth. As long as data is flowing on the
links, then one RTT worth of data is included in the N2 + N3
values, but never occupies switch memory.

It is well known that statistical multiplexing is expected to be
effective when a large number of VCs of relatively small average
bandwidths and small bursts share a real memory. Using the N23
credit-based flow control, bursts will be bounded by N2 + N3 cells.
Using N2 = 10 and a relatively small value for N3, we can ensure
that the carried traffic will have small bursts and therefore the use

Real
MemoryVirtual

Memory

Figure 9: ”Virtual memory” for credit allocation and
 “real memory” for storing data cells

of statistical multiplexing in minimizing memory will work well.
The is validated by the simulation results in the next section.

In summary, suppose that there are A flow controlled VCs, and
they use the same N2 and N3 values. If the flow control mechanism
needs to guarantee that there is never any cell loss due to conges-
tion, then M must be at least A*(N2+N3). However, if some non-
zero probability of cell loss is acceptable, then M can be much
smaller than A*(N2+N3).

Another way of looking at this statistical multiplexing approach
is that when a moderate number of VCs are congested, the flow
control mechanism achieves zero cell loss, and provides backpres-
sure to control the sources. Under heavy congestion, when many
VCs are congested, cells will be lost. This is illustrated by the
conceptual load-loss curves [18] of Figure 11. While flow control

with the full amount of memory to guarantee zero cell loss has an
ideal load-loss curve, with reduced memory using statistical multi-
plexing there is still a large region of the load-loss curve which
gives efficient operation. The load level at which loss occurs
depends on the size of the real memory, and on the characteristics
of the traffic and the rest of the network. Reasonable end system
protocols, such as TCP/IP, should be able to make effective use of
this broad region of efficient operation.

8. Simulation Configuration
All the simulations to be presented in the rest of the paper

assume a simple configuration shown in Figure 11. This configura-
tion was chosen to allow easy interpretation of simulation results

Figure 10: Load-loss curves for various schemes

No Flow Control

N23 Flow Control (Full Memory)

Loss
Throughput

1.00 2.0

N23 Flow Control (Reduced Memory)

Load

Throughput

Throughput

Loss

1.0

0

1.00 2.0Load

1.0

0

1.00 2.0Load

1.0

0

Loss

Page 11 of 14

The adaptive N3 can reach values much higher than would be
practical for a statically defined N3. This allows the switch to clear
the burst through as quickly as possible, reducing delay.

The increase of the N3 value in response to an arriving burst of
cells is exponential under light network loads, but linear under
heavy loads. Consider a lightly loaded network. The adaptive N3
algorithm in Section 6 will increase N3 rapidly. A few cells sent on
the VC will increase its N3 by more than the number of cells sent,
enabling more cells to be sent -- N3 increases exponentially.

However if link usage is high, N3 will increase by less than the
number of cells sent out, so that N3 will increase by only a small
amount when the initial cells are sent out. N3 will not increase
further until the switch receives a credit cell enabling it to send
more cells.

This exponential/linear increase scheme provides low latency
under low network loads, and stability under high loads.

Figure 16 shows the memory usage in Switch-1 as a function of
time in cell cycles. Memory usage is lower than that of usage of
non flow-controlled traffic as shown in Table 1. The low memory
usage is achieved without any loss of cells.

11.2. Simulation C-S2
B (VC burst size) = 172
D (Round-trip Propagation delay) = 3200
F (Total offered load) = 95%
M (Switch memory size) = Unlimited
N (Number of VCs) = 200
T (Simulated time) = 1,000,000 cell periods
Table 2 summarizes the performance of the adaptive credit

allocation method, in terms of its MMU, delay and link utilization.
Again, note that relatively small memory usage is achieved

12. Simulation Suite D: NFS

12.1. Simulation Configuration
The simulation configuration for NFS [16] traffic is depicted in

Figure 17. Clients on the right-hand side issues read requests to the
servers on the left-hand side. The figure shows 80 VCs each
carrying data responding to requests carried on paired VCs from

Figure 15: A blown up view of part of the tracking
shown in Figure 14 (Simulation C-S1)

0

50

100

150

200

250

300

1000 1050 1100 1150 1200 1250 1300

Souce Host
Switch - 1
Switch - 2

Time in number of 500-cell-cycle periods

Va
lu

e
of

 N
3

right to left; the traffic on client-to-server VCs is small. NFS traffic
is essentially a request/response transaction stream, which is
typical of many database access and transaction processing proto-
cols.

In this simulation, we measured the total number of transac-
tions completed between clients and servers, as well as the number
of datagrams lost.

The simulation was driven from a trace of real activity on our
network. The only activity was reading through all the files in a
large home directory. We multiplied the size of all packets by 4, in

MMU # Cell
Delays

Link
Utilization

Adaptive Credit
Allocation

1,150 14,088 95%

Static Credit
Allocation

(Simulation B-
S2, Figure 12)

1,600
(N3=30)

2,300
(N3=40)

16,083
(N3=30)
13,272

(N3=40)

95%

Table 2: Performance comparisons between
adaptive and static credit allocation

(Simulations B-S2 and C-S2)

Figure 16: Memory usage profile (Simulation C-S1)

0

200

400

600

800

1000

1200

0 200000 400000 600000 800000 1e+06
Time in number of cycles

M
em

or
y

U
sa

ge
 in

 N
um

be
r o

f C
el

ls

Figure 17: NFS simulation configuration

VC-1

VC-80

VC-8

VC-73

Servers Clients

Page 12 of 14

order to simulate a more aggressive NFS implementation. (NFS
typically handles blocks of at most 8KB - the maximum size in this
simulation is 32KB). We then simulated having 8 clients, each
running from a different part of the trace with each of 10 servers.
Thus the simulated traffic was 320 (4*80) times the measured
traffic. The simulated clients and servers also took half as long to
respond as the measured response time - this did not change the
network load very much.

12.2. Simulation D-S3
Max Data Packet Size = 693 cells

(32 KB data + 1/2 KB header)
D (Round-trip propagation delay) = 3,200
N (Number of VCs) = 80 (8 clients * 10 servers)
T (Simulated time) = 1,000,000 cell periods = 2.7 sec
N2 = 10
N3 = Adaptive
Data rate = 155 Mb/sec
NFS retransmit time-out = 1.0 second

Without flow control, a very large amount of memory is
required to low datagram loss levels - approximately 40000 cells.
Flow control, with the adaptive scheme, reduces the loss level to
zero while using substantially less memory (3700 cells). In the
simulation, the population of users is large enough that the lost
traffic of a few clients does not impact the total transaction rate
substantially. In the real world, every lost datagram causes a pause
of 1 or more seconds for some client, while it waits to retransmit.
Clients that lose multiple datagrams in a row double their timeout
every time, within some bounds. So a loss of 3 consecutive data-
grams implies a 7 second pause. These pauses have a large effect
on the average speed for a given set of tasks.

More detailed analysis of the simulation traces showed
behavior far worse than evidenced from the table. Essentially,
about half of the NFS clients experienced a lost packet in the initial
50 mS, and were therefore idle for 1 second. When they retrans-
mitted, there was again high packet loss, and within a few mS a
(different) half of the NFS clients lost packets and became idle.
Thus, only half of the clients were ever active at one time, while
the rest were sitting idle.

FC, Adaptive
N3 Non FC

Memory Size
(M)

Cell Loss Rate & Datagram Loss Rate
(L & DL)

3,700 Cells
10,000 Cells

0% & 0%
0% & 0%

6% & 4.5%
4.1% & 2.6%

Complete Transactions

5,000 Cells 2,681 1,907

Datagram Transit Time (cell times)

5,000 Cells 16,700 7,300

Table 3: Performance comparison of NFS over FC and non-FC
networks (Simulation D-S3)

Assuming 5000 cells of available switch memory, the network
latency is 22 mS for FC, and 10 mS for non FC. With FC, if a
client needs to make 1,000 serial reads, total time will be 22
seconds in addition to a few seconds of server time. Without FC,
assuming losses cause a 1 second pause, total time will be 63
seconds plus server time. The improvement is even more dramatic
on shorter links (where NFS is more likely to be used.)

13. What Do All the Above Simulation Results
Mean?

We draw some general conclusions from the simulations
reported in the preceding section and from other simulations (such
as those with offered traffic load F at 50% instead of 95%) which
we have done but are not reported in this paper. Table 4 summa-
rizes these conclusions.

One should read Table 4 as follows. Consider an offered traffic
giving say, F= 95% load, such as that used by a S1 or S2 simula-
tion in the preceding section. Suppose that a non flow-controlled
network (with unlimited memory and per-VC queueing) has an
average delay of x. Then if the network is adaptively flow-
controlled (by the N3 adaptive algorithm of Section 6), the average
delay is expected to be no more than 2x. Moreover, this adaptively
flow-controlled network is expected to need only about a half of
the memory (having say, y cells) required by the corresponding
statically flow-controlled network achieving the same average
delay. The required memory for the non flow-controlled network
to achieve a reasonably low cell loss rate will need to have much,
much more than y cells. Both the non flow-controlled and adap-
tively flow-controlled networks are easier to use than a statically
flow-controlled network, because they don’t require users’ assis-
tance in allocating credit buffer (i.e., setting the N3 value). This
analysis implies that the adaptive FC is the winner among the three
approaches.

14. Concluding Remarks
Existing ATM protocol standards are expected to perform well

with steady, predictable traffic; however data traffic such as on

Non FC Statically
FC Adaptively FC

Delay x 2x 2x

Memory
Usage

>> RTT N*RTT*BWpeak
(or lower as in

Section 7)

3*RTT
(or lower as in

Section 7)

Loss High Zero
(or low if mem-
ory is reduced)

Zero
(or low if mem-
ory is reduced)

Ease of Use High Low High

Table 4: Performance comparison between non flow-controlled
(Non FC), adaptively flow-controlled (Adaptively FC), and

statically flow-controlled (Statically FC) networks.
N is # of connections

Page 13 of 14

demand data transfer and interactive sessions are highly bursty and
unpredictable. ATM networks without flow control do not handle
this traffic well. Flow control allows best-effort traffic to attain
high throughput, and experience low latency and loss with
minimal buffer reservation through the network.

Some early proposals for flow control in ATM networks
required large amounts of buffer memory, proportional to the link
length times the total peak capacity of all VCs. Memory for gigabit
ATM switches can be expensive due to the high bandwidth
involved. Although these flow control proposals, without
employing techniques of this paper, could be practical for LANs
with small link propagation delays, the large memory requirements
created many difficulties for ATM WANs:

• Hosts had to make accurate estimates of how much bandwidth
they would require, in order to request an appropriate credit
buffer size (i.e., some N3-equivalent value).

• Idle VCs consumed significant switch resources. Attempting
to deactivate idle VCs imposed significant protocol overheads
on the hosts and switches.

• Traffic requiring large peak bandwidths but with low average
bandwidth (X Window System connections, for example) used
network resources very inefficiently

The results reported in this paper improve this situation in two
ways. First, we have shown that much smaller memories can
provide zero or low loss rates through statistical multiplexing - in
fact the use of flow control can reduce total switch memory
requirements for bursty traffic.

Second, the adaptive N3 protocol eliminates the need for hosts
to estimate their traffic requirements, and allows highly bursty,
variable traffic sources to use network resources efficiently.
Finally, we can expect that ATM can be as simple and efficient for
computer communications as TCP over IP networks.

Our initial flow-controlled switches designs required substan-
tial hardware support for credit management. Many aspects of
credit cell management required sub-microsecond processing. The
CUP method described in this paper, however, is designed with a
software implementation in mind.

A “Credit Card” added as an overlay on a conventional ATM
switch can run the credit protocol in software. Because the N2 is
used to reduce the credit processing, the software only needs to
process about 1 event for every 10-20 cells of flow-controlled
traffic, requiring perhaps 10 memory references

Our reference architecture, used for all simulations reported
here, is designed so that delays in processing by the software will
only result in a slight degradation in total throughput of flow-
controlled cells, but will never produce incorrect behavior such as
dropping cells.

In our reference implementation, all the machinery required for
flow control runs only at the link rate (not a multiple thereof, as do
many parts of ATM switches). It requires only the following
switch features above the features common to any ATM switch:

• A Credit Card, containing a fast microcontroller, capable of
sending and receiving cells at the nominal link rate. It might
replace a port card in a backplane-style switch, and it can be
the same engine that runs connection setup processing.

• Egress, ingress, and drop counters for each VC, readable by
the Credit Card. (Some ATM switches already have these
counters).

• Per-VC credit counters on each port card, which are decre-
mented when a cell is sent. The scheduler must not send cells
for VCs with no credit.

• Per-VC N2 counters on each port card which are decremented
for every cell sent. When a counter reaches zero, the ID
number of that VC is enqueued in a FIFO, readable by the
Credit Card. This ID signals the Credit Card to send a credit
cell.

The adaptive N3 protocol used in the simulations is still at an
early stage of development. We suspect that many interesting algo-
rithms will be developed that can improve performance substan-
tially over the results we have shown. This effort will be aided by
the nature of CUP:

• The implementation of the algorithm as software allows easy
experimentation and sophisticated algorithms.

• The basic credit cell primitive, and the lost data cell recovery
message, are the only protocol elements required between
switches. Simple and easy to standardize, the CUP protocol
will allow switch manufacturers to develop new and better
adaptive N3 algorithms to optimize throughput of their
switches.

CUP makes a uniform flow control possible on both LAN and
WAN ATM networks, and is simple enough that it can be easily
standardized for heterogenous networks. We have shown that
using flow control can reduce memory requirements, and adaptive
N3 control can reduce them still further, while also simplifying
connection setup. We think CUP is the right foundation on which
to provide best-effort capabilities in ATM networks.

References
[1] ATM Forum, “ATM User-Network Interface Specification,”

Version 3.0, Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[2] “ISDN - Core Aspects of Frame Protocol for Use with Frame
Relay Bearer Service,” ANSI T1.618-1991.

[3] “High-Performance Parallel Interface - Mechanical, Elec-
trical and Signalling Protocol Specification (HIPPI-PH)”,
ANSI X3.183-1991.

[4] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam,
M. Levine, M. Wire, C. Peterson, J. Susman, J. Sutton, J.
Urbanski and J. Webb, “Integrating Systolic and Memory
Communication in iWarp,” Conference Proceedings of the
17th Annual International Symposium on Computer Architec-
ture, Seattle, Washington, June 1990, pp. 70-81.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simula-
tion of a Fair Queueing Algorithm,” Proc. SIGCOMM ‘89
Symposium on Communications Architectures and Protocols,
pp.1-12.

[6] H. J. Fowler and W. E. Leland, “Local Area Network Traffic
Characteristics, with Implications for Broadband Network
Congestion Management,” IEEE J. on Selected Areas in
Commun., vol. 9, no. 7, pp. 1139-1149, Sep. 1991.

Page 14 of 14

[7] M. W. Garrett, “Statistical Analysis of a Long Trace of Vari-
able Bit Rate Video Traffic,” Chapter IV of Ph.D. Thesis,
Columbia University, 1993.

[8] V. Jacobson, “Congestion Avoidance and Control,” Proc.
SIGCOMM ’88 Symposium on Communications Architec-
tures and Protocols, Aug. 1988.

[9] M. G. H. Katevenis, “Fast Switching and Fair Control of
Congested Flow in Broadband Networks,” IEEE J. on
Selected Areas in Commun., vol. SAC-5, no. 8, pp. 1315-
1326, Oct. 1987.

[10] H. T. Kung, “Gigabit Local Area Networks: A Systems
Perspective,” IEEE Communications Magazine, 30 (1992),
pp. 79-89.

[11] H. T. Kung and A. Chapman, “The FCVC (Flow-Controlled
Virtual Channels) Proposal for ATM Networks,” Version 2.0,
1993. A summary appears in Proc. 1993 International Conf.
on Network Protocols, San Francisco, California, October 19-
22, 1993, pp. 116-127.

[12] H.T. Kung, R. Morris, T. Charuhas, and D. Lin, “Use of Link-
by-Link Flow Control in Maximizing ATM Networks Perfor-
mance: Simulation Results,” Proc. IEEE Hot Interconnects
Symposium, ‘93 Palo Alto, California, Aug. 1993.

[13] W. E. Leland, M. S. Taqqu, W. Wilinger and D. V. Wilson,
“On the Self-Similar Nature of Ethernet Traffic,” Proc.
SIGCOMM ‘93 Symposium on Communications Architec-
tures and Protocols, 1993.

[14] A. Parekh and R. G. Gallager, “Generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks - The Multiple Node Case,” IEEE INFOCOM ‘93,
San Francisco, Mar. 1993.

[15] K.K. Ramakrishnan and R. Jain, “A Binary Feedback
Scheme for Congestion Avoidance in Computer Networks,”
ACM Transactions on Computer Systems, Vol. 8, No. 2, pp.
158-181, May 1990.

[16] Sun Microsystems. “NFS: Network File System Protocol
Specification,” RFC 1094, Mar 1988.

[17] N. Yin and M. G. Hluchyj, “On Closed-Loop Rate Control for
ATM Cell Relay Networks,” submitted to IEEE Infocom
1994.

[18] C.L. Williamson, D.L. Cheriton, “Load-Loss Curves: Support
for Rate-Based Congestion Control in High-Speed Datagram
Networks,”, Proc. SIGCOMM ‘91 Symposium on Communi-
cations Architectures and Protocols, pp.17-28.

